Extremal function pairs in asymmetric normed linear spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remotality and proximinality in normed linear spaces

In this paper, we consider the concepts farthest points and nearest points in normed linear spaces, We obtain a necessary and coecient conditions for proximinal, Chebyshev, remotal and uniquely remotal subsets in normed linear spaces. Also, we consider -remotality, -proximinality, coproximinality and co-remotality.

متن کامل

A Survey of Linear Extremal Problems in Analytic Function Spaces

The purpose of this survey paper is to recall the major benchmarks of the theory of linear extremal problems in Hardy spaces and to outline the current status and open problems remaining in Bergman spaces. We focus on the model extremal problem of maximizing the norm of the linear functional associated with integration against a polynomial of finite degree, and discuss known solutions of partic...

متن کامل

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

Schwarz'S lemma in normed linear spaces.

In this paper we show that any Fréchet holomorphic function mapping the open unit ball of one normed linear space into the closed unit ball of another must be a linear mapping if the Fréchet derivative of the function at zero is a surjective isometry. From this fact we deduce a Banach-Stone theorem for operator algebras which generalizes that of R. V. Kadison.

متن کامل

Inner Products in Normed Linear Spaces

Let T be any normed linear space [l, p. S3]. Then an inner product is defined in T if to each pair of elements x and y there is associated a real number (x, y) in such a way that (#, y) » (y, x), \\x\\ = (#, #), (x, y+z) = (#,y) + (x, 2), and (/#,y) = /(#, y) for all real numbers /and elements x and y. An inner product can be defined in T if and only if any two-dimensional subspace is equivalen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2014

ISSN: 0166-8641

DOI: 10.1016/j.topol.2014.02.006